Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse.
نویسندگان
چکیده
Germ line DNA mismatch repair mutations in MLH1 and MSH2 underlie the vast majority of hereditary non-polyposis colon cancer. Four mammalian homologues of Escherichia coli MutL heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. Although MLH1/PMS2 is generally thought to have the major MutL activity, the precise contributions of each MutL heterodimer to mismatch repair functions are poorly understood. Here, we show that Mlh3 contributes to mechanisms of tumor suppression in the mouse. Mlh3 deficiency alone causes microsatellite instability, impaired DNA-damage response, and increased gastrointestinal tumor susceptibility. Furthermore, Mlh3;Pms2 double-deficient mice have tumor susceptibility, shorter life span, microsatellite instability, and DNA-damage response phenotypes that are indistinguishable from Mlh1-deficient mice. Our data support previous results from budding yeast that show partial functional redundancy between MLH3 and PMS2 orthologues for mutation avoidance and show a role for Mlh3 in gastrointestinal and extragastrointestinal tumor suppression. The data also suggest a mechanistic basis for the more severe mismatch repair-related phenotypes and cancer susceptibility in Mlh1- versus Mlh3- or Pms2-deficient mice. Contributions by both MLH1/MLH3 and MLH1/PMS2 complexes to mechanisms of mismatch repair-mediated tumor suppression, therefore, provide an explanation why, among MutL homologues, only germ line mutations in MLH1 are common in hereditary non-polyposis colon cancer.
منابع مشابه
Novel Roles for MLH3 Deficiency and TLE6-Like Amplification in DNA Mismatch Repair-Deficient Gastrointestinal Tumorigenesis and Progression
DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3(-/-);Apc(1638N) and Mlh3(-/-);Pms2(-/-);Apc(1638N) (MPA) mice. Mlh3 nullizygosity significan...
متن کاملInhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair
Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the role...
متن کاملP-205: Analysis of Mlh3 C2531T Polymorphism in Iranian Women with Unexplained Infertility
Background: Infertility is increasingly recognized as a major health problem. Meiotic genes are very important candidates for genes contributing to female and male infertility. Mammalian MutL homologues have dual roles in DNA mismatch repair (MMR) after replication errors and meiotic reciprocal recombination. There are four MutL homologues in eukaryotes that mutations of three of them (Mlh1, Ml...
متن کاملLocalization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I
Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct compl...
متن کاملThe DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression.
Repair of mismatches in DNA in mammalian cells is mediated by a complex of proteins that are members of two highly conserved families of genes referred to as MutS and MutL homologues. Germline mutations in several members of these families, MSH2, MSH6, MLH1, and PMS2, but not MSH3, are responsible for hereditary non-polyposis colorectal cancer. To examine the role of MSH3, we generated a mouse ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 65 19 شماره
صفحات -
تاریخ انتشار 2005